141 research outputs found

    InSAR Time Series Analysis of Natural and Anthropogenic Coastal Plain Subsidence: The Case of Sibari (Southern Italy)

    Get PDF
    We applied the Small Baseline Subset multi-temporal InSAR technique (SBAS) to two SAR datasets acquired from 2003 up to 2013 by Envisat (ESA, European Space Agency) and COSMO-SkyMed (ASI, Italian Space Agency) satellites to investigate spatial and temporal patterns of land subsidence in the Sibari Plain (Southern Italy). Subsidence processes (up to ~20 mm/yr) were investigated comparing geological, hydrogeological, and land use information with interferometric results. We suppose a correlation between subsidence and thickness of the Plio-Quaternary succession suggesting an active role of the isostatic compensation. Furthermore, the active back thrusting in the Corigliano Gulf could trigger a flexural subsidence mechanism even if fault activity and earthquakes do not seem play a role in the present subsidence. In this context, the compaction of Holocene deposits contributes to ground deformation. Despite the rapid urbanization of the area in the last 50 years, we do not consider the intensive groundwater pumping and related water table drop as the main triggering cause of subsidence phenomena, in disagreement with some previous publications. Our interpretation for the deformation fields related to natural and anthropogenic factors would be a comprehensive and exhaustive justification to the complexity of subsidence processes in the Sibari Plain

    Subsidence Detected by Multi-Pass Differential SAR Interferometry in the Cassino Plain (Central Italy): Joint Effect of Geological and Anthropogenic Factors?

    Get PDF
    In the present work, the Differential SAR Interferometry (DInSAR) technique has been applied to study the surface movements affecting the sedimentary basin of Cassino municipality. Two datasets of SAR images, provided by ERS 1-2 and Envisat missions, have been acquired from 1992 to 2010. Such datasets have been processed independently each other and with different techniques nevertheless providing compatible results. DInSAR data show a subsidence rate mostly located in the northeast side of the city, with a subsidence rate decreasing from about 5–6 mm/yr in the period 1992–2000 to about 1–2 mm/yr between 2004 and 2010, highlighting a progressive reduction of the phenomenon. Based on interferometric results and geological/geotechnical observations, the explanation of the detected movements allows to confirm the anthropogenic (surface effect due to building construction) and geological causes (thickness and characteristics of the compressible stratum

    The VELISAR initiative for the measurement of ground velocity in italian seismogenic areas

    Get PDF
    VELISAR (Ground VELocity in Italian Seismogenic Areas) is a scientific research initiative aimed at producing a map of the ground deformation over most of the seismogenic areas of Italy, using the space-based technique of multitemporal Synthetic Aperture Radar Interferometry (InSAR). The ground velocities derived from InSAR data will be validated by means of ground based data obtained from GPS, optical leveling, seismological and neotectonic studies. The scope of the project is to produce a high-resolution ground deformation dataset useful to model the seismic cycle of strain accumulation and release at the scale of the single faults. The main objective of VELISAR is to produce maps of ground velocity with the following characteristics: - A ground resolution better than 100 m. - Average uncertainty of LoS velocity measurements smaller than 2 mm/yr . - Temporal coverage of at least 7 years. - Retrieval of East and Up components from ascending and descending LoS. VELISAR will exploit the potential of the long time series (1992-2000) of ERS InSAR data maintained in the ESA archives; over 4000 ERS images will have to be processed to accomplish its objectives. Presently, two InSAR techniques for the measurement of slow ground deformation are used in VELISAR: the Permanent Scatterers (PS) technique developed by the Politecnico of Milano (POLIMI), and the Small Baseline Subset (SBAS) technique, developed by the Institute for Remote Sensing of Environment (IREA-CNR), in Napoli. The PS technique is applied by TRE preferably over areas characterised by diffuse temporal decorrelation due to, for instance, erodible lithologies, agricultural land use and strong vegetation cover. In these areas we expect to obtain good temporal coherence mainly on sparse point scatterers. The SBAS technique is applied by IREA and INGV mostly over areas where limited temporal decorrelation is expected: urban areas, scarcely vegetated areas. The ground resolution at which these data are originally processed is 80 m. An important goal of the VELISAR initiative is to disseminate the information on the InSAR-derived ground velocity measurements, to the scientific community and to the public in general. Such goal is accomplished through a dedicated web site, where the velocity maps of the italian seismogenic areas will be progressively published. We will present the initiative, its scope and objectives, the technical details and the data processing strategies, and some examples of ground velocity maps.PublishedVienna, Austriaope

    Deliverable # 3.01.1 Technical report illustrating the results obtained in the Crotone Peninsula based on geological and InSAR data

    Get PDF
    This work was aimed at collecting data to estimating the rate of uplift over several temporal scales. The analysis includes a very short-term analysis (tens of years) of InSAR data, a middle-term analysis of Holocene geological data, and a long-term analysis of Middle-Late Pleistocene geological data. After a preliminary reconnaissance in a large area, all final datasets focus strictly on the area of the Crotone Peninsula. The techniques applied span from Small Baseline Subset Interferometric SAR, to classic geomorphic and stratigraphic analysis aided by radiocarbon and U/Th dating.Agreement INGV-DPC 2007-2009 Project S1: Analysis of the seismic potential in Italy for the evaluation of the seismic hazardPublished3.2. Tettonica attiva4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionaleope

    Coseismic deformation and source modeling of the May 2012 Emilia (Northern Italy) earthquakes

    Get PDF
    On May 20th, 2012, an ML 5.9 earthquake (Table 1) occurred near the town of Finale Emilia, in the Central Po Plain, Northern Italy (Figure 1). The mainshock caused 7 casualties and the collapse of several historical buildings and industrial sheds. The earthquake sequence continued with diminishing aftershock magnitudes until May 29th, when an ML 5.8 earthquake occurred near the town of Mirandola, ~12 km WSW of the mainshock (Scognamiglio et al., 2012). This second mainshock started a new aftershock sequence in this area, and increased structural damage and collapses, causing 19 more casualties and increasing to 15.000 the number of evacuees. Shortly after the first mainshock, the Department of Civil Protection (DPC) activated the Italian Space Agency (ASI), which provided post-seismic SAR Interferometry data coverage with all 4 COSMO-SkyMed SAR satellites. Within the next two weeks, several SAR Interferometry (InSAR) image pairs were processed by the INGV-SIGRIS system (Salvi et al., 2012), to generate displacement maps and preliminary source models for the emergency management. These results included continuous GPS site displacement data, from private and public sources, located in and around the epicentral area. In this paper we present the results of the geodetic data modeling, identifying two main fault planes for the Emilia seismic sequence and computing the corresponding slip distributions. We discuss the implication of this seismic sequence on the activity of the frontal part of the Northern Apennine accretionary wedge by comparing the co-seismic data with the long term (geological) and present day (GPS) velocity fields.Published645-6551.1. TTC - Monitoraggio sismico del territorio nazionale1.9. Rete GPS nazionale1.10. TTC - Telerilevamento3.2. Tettonica attivaJCR Journalrestricte

    Deliverable # 3.01.1 Technical report illustrating the results obtained in the Crotone Peninsula based on geological and InSAR data

    Get PDF
    This work was aimed at collecting data to estimating the rate of uplift over several temporal scales. The analysis includes a very short-term analysis (tens of years) of InSAR data, a middle-term analysis of Holocene geological data, and a long-term analysis of Middle-Late Pleistocene geological data. After a preliminary reconnaissance in a large area, all final datasets focus strictly on the area of the Crotone Peninsula. The techniques applied span from Small Baseline Subset Interferometric SAR, to classic geomorphic and stratigraphic analysis aided by radiocarbon and U/Th dating

    The SAVEMEDCOASTS-2 webGIS: The Online Platform for Relative Sea Level Rise and Storm Surge Scenarios up to 2100 for the Mediterranean Coasts

    Get PDF
    Here we show the SAVEMEDCOASTS-2 web-based geographic information system (webGIS) that supports land planners and decision makers in considering the ongoing impacts of Relative Sea Level Rise (RSLR) when formulating and prioritizing climate-resilient adaptive pathways for the Mediterranean coasts. The webGIS was developed within the framework of the SAVEMEDCOASTS and SAVEMEDCOASTS-2 projects, funded by the European Union, which respond to the need to protect people and assets from natural disasters along the Mediterranean coasts that are vulnerable to the combined effects of Sea Level Rise (SLR) and Vertical Land Movements (VLM). The geospatial data include available or new high-resolution Digital Terrain Models (DTM), bathymetric data, rates of VLM, and multi-temporal coastal flooding scenarios for 2030, 2050, and 2100 with respect to 2021, as a consequence of RSLR. The scenarios are derived from the 5th Assessment Report (AR5) provided by the Intergovernmental Panel on Climate Change (IPCC) and encompass different Representative Concentration Pathways (RCP2.6 and RCP8.5) for climate projections. The webGIS reports RSLR scenarios that incorporate the temporary contribution of both the highest astronomical tides (HAT) and storm surges (SS), which intensify risks to the coastal infrastructure, local community, and environment

    Activation of the SIGRIS monitoring system for ground deformation mapping during the Emilia 2012 seismic sequence, using COSMO-SkyMed InSAR data

    Get PDF
    On May 20, 2012, at 02:03 UTC, a moderate earthquake of local magnitude, ML 5.9 started a seismic sequence in the central Po Plain of northern Italy (Figure 1) [Scognamiglio et al. 2012, this volume]. The mainshock occurred in an area where seismicity of comparable magnitude has neither been recorded nor reported in the historical record over the last 1,000 years [Rovida et al. 2011]. The aftershock sequence evolved rapidly near the epicenter, with diminishing magnitudes until May 29, 2012, when at 07:00 UTC a large earthquake of ML 5.8 occurred 12 km WSW of the mainshock, starting a new seismic sequence in the western area (Figure 1); a total of seven earthquakes with ML >5 occurred in the area between May 20 and June 3, 2012 (Figure 1). The details of the seismic sequence can be found in the report by Scognamiglio et al. [2012]. Immediately after the mainshock, the Italian Department of Civil Protection (Dipartimento di Protezione Civile; DPC) requested the Italian Space Agency (Agenzia Spaziale Italiana; ASI) to activate the Constellation of Small Satellites for Mediterranean Basin Observation (COSMOSkyMed) to provide Interferometric Synthetic Aperture Radar (InSAR) coverage of the area. COSMO-SkyMed consists of four satellites in a 16-day repeat-pass cycle, with each carrying the same SAR payload [Italian Space Agency 2007]. In the current orbital configuration, within each 16- day cycle, image pairs with temporal baselines of 1, 3, 4 and 8 days can be formed from the images acquired by the four different sensors. Combined with the availability of a wide range of electronically steered antenna beams with incidence angles ranging from about 16° to 50° at near-range [E-geos 2012], this capability allows trade-offs between temporal and spatial coverage to be exploited during acquisition planning. A joint team involving the Istituto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology) and the Istituto per il Rilevamento Elettromagnetico dell'Ambiente (IREA-CNR; Institute for the Electromagnetic Sensing of the Environment) was activated to generate InSAR-based scientific products to support the emergency management. In this framework, the ASI and DPC requested that INGV activated the Spacebased Monitoring System for Seismic Risk Management (SIGRIS) [Salvi et al. 2010]. SIGRIS consists of a hardware/ software infrastructure that is designed to provide the DPC with value-added information products in the different phases of the seismic cycle. During earthquake emergencies, its goal is to rapidly provide decision-support products, such as validated ground-displacement maps and seismic source models. This study reports the details of the activation of the SIGRIS system in the case of the Emilia sequence. It provides a description of the COSMO-SkyMed datasets and processing procedures, as well as selected interferometric results for the coseismic and post-seismic ground deformation. Fault modeling results for the seismic sources of the largest earthquakes, and a more detailed discussion of the observed ground deformations are reported in Pezzo et al. [2012]

    MULTIDISCIPLINARY STUDY OF SUBSIDENCE AND SINKHOLE OCCURRENCES IN THE ACQUE ALBULE BASIN (ROMA, ITALY)

    Get PDF
    Abstract We present the results of a combined analysis of remote sensing and geophysical‐geotechnical data carried out in the Acque Albule Basin, a sinkhole prone area located close to the city of Roma, where a wide travertine wedge is present. We carried out geophysical measurements and borehole drillings over two test areas to image the subsoil where paroxysmal surficial dynamics occur. One site is marked by subsidence occurring at least since the early 2000s, whereas the other site hosts the "La Regina" and "Colonnelle" sinkhole lakes, which discharge sulfur‐carbonated waters. The stability of these two sites threatens highway, railway, and airport facilities, and this study helps to assess the geological hazard. For example, InSAR and LiDAR data helped define wide scale subsidence over the last 20 years and previously undetected small‐scale morphologies. Geophysical measurements of the latter revealed shallow and deep dissolution affecting the travertine and driving surficial paroxysmal events. Both study sites were found to lie inside a large depression located at the junction between Jurassic carbonate and Plio‐Pleistocene units in association with paleo karst morphologies in the travertine deposits and affected by the present‐past spillage of sulfurous waters. Given these elements, multidisciplinary geophysical observations are crucial for assessing and mitigating the geological risk and guiding land use planning and management
    corecore